The Comparison of Methods Artificial Neural Network with Linear Regression Using Specific Variables for Prediction Stock Price in Tehran Stock Exchange
نویسندگان
چکیده
In this paper, researchers estimated the stock price of activated companies in Tehran (Iran) stock exchange. It is used Linear Regression and Artificial Neural Network methods and compared these two methods. In Artificial Neural Network, of General Regression Neural Network method (GRNN) for architecture is used. In this paper, first, researchers considered 10 macro economic variables and 30 financial variables and then they obtained seven final variables including 3 macro economic variables and 4 financial variables to estimate the stock price using Independent components Analysis (ICA). So, we presented an equation for two methods and compared their results which shown that artificial neural network method is more efficient than linear regression method.
منابع مشابه
Forecasting Stock Market Using Wavelet Transforms and Neural Networks: An integrated system based on Fuzzy Genetic algorithm (Case study of price index of Tehran Stock Exchange)
The jamor purpose of the present research is to predict the total stock market index of Tehran Stock Exchange, using a combined method of Wavelet transforms, Fuzzy genetics, and neural network in order to predict the active participations of finance market as well as macro decision makers.To do so, first the prediction was made by neural network, then a series of price index was decomposed by w...
متن کاملShort-term Prediction of Tehran Stock Exchange Price Index (TEPIX): Using Artificial Neural Network (ANN)
The main objective of this study is to find out whether an Artificial Neural Network (ANN) will be useful to predict stock market price, which is highly non-linear and uncertain. Specifically, this study will focus on forecasting TSE Price Index (TEPIX) as the most significant index of Iran Stock Market. Many data have been used as inputs to the network. These data are observations of 2000 day...
متن کاملA Comparative Study of the Prediction Stock Crash Risk by using Meta- Heuristic & Regression
One of the most important methods of opacity accounting information by management is to accelerate the identification of good news versus delaying the identification of bad news on profits, but there is always a final level of accumulation of bad news in the company, and by reaching that its final level, these bad news will be released, which will lead to a Stock Price Crash Risk. In fact, stoc...
متن کاملStock Market Modeling Using Artificial Neural Network and Comparison with Classical Linear Models
Stock market plays an important role in the world economy. Stock market customers are interested in predicting the stock market general index price, since their income depends on this financial factor; Therefore, a reliable forecast in stock market can be extremely profitable for stockholders. Stock market prediction for financial markets has been one of the main challenges in forecasting finan...
متن کاملMulti-Step-Ahead Prediction of Stock Price Using a New Architecture of Neural Networks
Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1003.1457 شماره
صفحات -
تاریخ انتشار 2010